
© 2004, Eduardo Miranda - 1 -

 Originally published as a part of 2004 PMI Global Congress Proceedings – Europe

Combining Critical Chain Planning and Incremental Development in Software
Projects

Eduardo Miranda, Program Director, Ericsson Research Canada

Abstract

Cutting content seems to be the prevalent way of meeting deadlines in projects that are running late. But
why waste effort and time working on things that most likely, are going to go at the first sign of trouble?
Why don’t make the decisions about what is important and what is not up-front, and only start work on the
latter if we have the necessary time to do it?

By combining critical chain (CC) and Incremental Development (ID), two well-known techniques, we can
create a new approach to plan and execute projects, which guaranties, with a set probability, the delivery of
an agreed subset of the total functionality by a stipulated date.

Introduction

A time-bound project is a project that is constrained by hard deadlines. Hard deadlines are those in which
the date of delivery is as important as the delivery itself. If the project delivers after the deadline, the
delivery loses much of its value. Examples of hard deadlines are exhibition dates, government regulations,
a competitor’s announcement and the customer’s own business plans.

Most of these projects, start with more requirements that can realistically be handled within the imposed
time constraints and consequently, midway through the development, they find necessary to start slashing
some of them. These un-planned cuts result in customer frustration and wasted effort. A much better
approach would be to define the requirements’ priority up-front, allocating their development to successive
releases of the project in such way, that we could be almost sure that the project will deliver all the
important requirements, that the second less important will still have a fair chance of being delivered, with
the gold plated ones only to be done if there is any time left.

While the lack of requirements prioritization, is one of the reasons why most of these projects are late, it is
certainly not the only one. The inability of traditional planning methods to deal with the uncertainty present
on the estimates on which the plans are based, and the failure to recognize that development work do not
progress in linear fashion, the infamous 90% complete syndrome, are also to blame.

As will be explained later, traditional critical path calculations involving uncertainty produce considerably
shorter schedules than those that should be realistically expected. With a shorter schedule as starting point,
being late is a tautology.

The second problem, assuming that a task progresses at a constant rate, prevents project managers from
seeing the early signs of delay in tasks until it is too late to take any other action than trim down features,
compromise on quality or re-schedule the project.

The method [1] presented here addresses these problems by combining ideas from critical chain planning
[2,3], incremental development [4] and rate monitoring [5] into a practical approach for planning and
executing time-bounded projects.

This method is not a one-stop solution for all software development problems. It just focuses on how to
best schedule work to guarantee that a working product with an agreed subset of the total functionality
could be delivered by a required date.

The sections that follow explain the fundamentals of planning under uncertainty, the use of rate monitoring
to track progress and finally the application of these concepts in planning and executing projects.

Uncertainty in the planning and execution of projects

Probabilities in Project Management

Uncertainty is the reason project management is needed. Things are neither black nor white; things always
depend on other things. In this context, we shall think of a probability as a numerical measure of the
strength of a belief in a certain proposition. By convention, probability ranges from 0 to 1, where 0 means
that the belief in question is certainly false and 1 means that is certainly true. A probability of .5 means that
there is no reason to favor a belief over another. For example, if a project manager assigns to a task a
probability of .7 of finishing in 30 days, he is saying that his belief to finish the task on time is stronger
than if he had assigned a .5 probability, but that he is not completely certain to be able to, which would
imply a probability of 1.

The mathematical theory of probability specifies how the probability on one belief should be constructed
from the probabilities of other beliefs in order for them to be consistent with one another. For example if
the project manager says that the probability of finishing a task in 30 days is .7, the probability of not
finishing on time would be .3 (1 - .7) and not some other arbitrary value like .4 or .5.

Task probabilities

The estimates on which project schedules and resource allocations are based are never single numbers;
whether spoken or not, there are many assumptions behind each of them. Some of these assumptions
concern the complexity of the tasks, others our ability to carry them out. Some of them, if true, will
contribute to an early completion of a task, others will add to the execution time. Intuitively we could see,
that for a task to finish at the earliest possible time, all the “favorable” assumptions must be true and all the
“inauspicious” ones false. The probability of this happening is very low. The same could be said for the
latest possible date. The most likely date corresponds then to a situation in which the most probable “good”
assumptions are true and the most probable “bad” ones are false. Numerically, the situation can be
expressed by a triangular probability distribution such as the one shown by Figure 1 (Strictly speaking, the
caption for the “y” axis should read f(x) since this is a continuous distribution. The term probability is used
instead for its intuitive appeal).

Since the actual probability distribution function for the duration of the task is unknown, the choice of a
simple triangular distribution is a sensible one [5]. Its right skewedness captures the fact that while there is
a limited number of things that will shorten the duration of a task, the number of things that can go wrong
is virtually unlimited.

From the project manager’s point of view, more important than the probability of finishing on a specific
date, is the probability of completing the task on or before a certain date. This probability, called the on-
time probability of the task, can be derived from the cumulative distribution shown in Figure 2.

Figure 1. If all the favorable
assumptions are true and all the
gloomy are false, the task will be
completed in 10 days, this is the
Earliest Completion Date. The
Most Likely duration is 20 days.
If everything that can go wrong,
short of abandoning the task,
goes wrong the task could be
completed in 40 days. This is the
Latest Completion Date.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
duration (days)

pr
ob

ab
ilit

y

© 2004, Eduardo Miranda - 2 -

 Originally published as a part of 2004 PMI Global Congress Proceedings – Europe

Figure 2. Cumulative
probabilities. The Most Likely
completion date has an on-time
probability of less than 40%.
The Expected completion date
is of around 23 days. If we
want to be 75% sure of
completing the task on time we
would have to schedule 27
days.

0%

20%

40%

60%

80%

100%

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
duration (days)

pr
ob

ab
ilit

y

In general, the larger the number of assumptions behind the estimated task duration, the larger the spread
between the earliest and the latest completion dates. The effect of such an uncertainty results in very
different on-time probabilities, as shown by Figure 3.

From tasks to projects

A common approach used to assess uncertainty in projects, is to calculate the expected duration of the

project as the sum of the expected duration of the tasks along the critical path, with an standard deviation
equal to the square root of the sum of the squares of the standard deviation of the same tasks, and then to
use a normal distribution to calculate the on-time probability for the project. This approach is based on the
central limit theorem, which states that the distribution of the sum of a number of independent random
variables approaches a normal distribution as the number of variables (tasks) grows larger.

0%

20%

40%

60%

80%

100%

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
duration (days)

pr
ob

ab
ilit

y

0.00
0.02

0.04
0.06
0.08
0.10

0.12
0.14

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
duration (days)

pr
ob

ab
ilit

y

Figure 3. Two tasks with the same Earliest and Most Likely, but different Latest Completion dates have
different levels of risk. The Expected completion dates for the less risky task is 17 days, while for the
other is 23 days. By the same token, the on-time probability of the Most likely date is around 37% in the
first case and under 20% in the second.

Assuming independent tasks duration as required by the central limit theorem, although a very common
assumption, is perhaps one of the most dangerous a project manager can make. In practical terms, this
assumption expresses the belief that the lateness of some tasks is compensated by the early completion of
others and that in the end everything balances out. This might be a valid assumption when dealing with
events such as rain in a construction project or a late delivery from a supplier, but not in situations such as
the underestimation of the system’s complexity or the overestimation of the team capabilities, which will
affect the duration of most tasks and in the same direction. If there is an underlying cause that could shift
the duration of several tasks in the same direction, the tasks are not independent but correlated. The

© 2004, Eduardo Miranda - 3 -

 Originally published as a part of 2004 PMI Global Congress Proceedings – Europe

practical consequence of dealing with correlated tasks duration is an increase in the project’s standard
deviation, which translates into higher risks. See figures 4-a and 4-b.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35
Number of elements added

Ti
m

es
 S

ta
nd

ar
d

D
ev

ia
tio

n

independent variables

ρ = 0.25

ρ = 0.50

ρ = 0.75

fully correlated variables Figure 4-a. Relationship
between the number of
tasks summed, the
coefficient of correlation
(ρ) and the standard
deviation of the sum.

Figure 4-b. Simulation of a simple
project showing the difference
between the assumptions of
independent and correlated task
durations. See the difference on the
shape of the distribution.

Other problem not addressed by traditional critical path calculations, is the problem of merging paths, see
Figure 5, where the earliest start of the integration task always corresponds to end the latest development
path. This results in a mechanism that passes delays, but seldom passes savings!

© 2004, Eduardo Miranda - 4 -

 Originally published as a part of 2004 PMI Global Congress Proceedings – Europe

Figure 5 – In the presence of
uncertainty, the expected project
duration is not equal to the sum of the
expected duration of the tasks in the
critical path. The integration task
cannot begin until both development
tasks have been completed.

Measuring Progress Using Rate of Changes
When measuring the progress of a task in terms of its main output, i.e. requirements defined, LOC, errors
found, pages of documentation written, etc, it is possible to observe that the rate of growth of the output is
not constant throughout the duration of the task and that it more closely resembles the shape of Figure 6.
This “S” pattern [7,8,9,10,11, 12], typical of many intellectual activities could be explained by the
existence of a number of actions and thought processes at the beginning and end of the task which,
although value adding, do not contribute directly to the quantity being measured. Examples of such actions
and thought processes are: learning, team formation and work reviews. Whatever the true reasons for this
effect, it is so common and noticeable that has a name of its own: “the 90% complete syndrome”.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

week

pe
rc

en
ta

ge
 c

om
pl

et
e

Figure 6. The “S” curve. Production
does not grow at a constant rate. At
the peak of productivity, between
weeks 3 and 5, the percentage
complete soars 20% in just one
week. Towards the end of the task it
takes three more times to go from 80
to 100% complete.

The result of extrapolating completion dates from the rates of progress observed through the half-life of the
task using a straight line is the announcement of optimistic completion dates that are never met. Figure 7
shows some examples of work progress from real projects, and Figure 8 the error incurred in forecasting
the task completion by using a linear model instead of the “S” curve paradigm.

© 2004, Eduardo Miranda - 5 -

 Originally published as a part of 2004 PMI Global Congress Proceedings – Europe

Progress rates are not constant

a) AXE Sw itch, error discovery pattern. Ericsson
1997.

b) Phyton Project. Semiconductor development
project. Reported by Ford and Sterman in
Overcoming the 90% Syndrome: Iteration
Management in Concurrent Development Projects.

c) 5ESS-2000 Sw itch, code production pattern.
Lucent 1997.

a

c

b

Figure 7. Progress, measured in terms of its visible output is not constant thru the duration of a task or
project.

© 2004, Eduardo Miranda - 6 -

 Originally published as a part of 2004 PMI Global Congress Proceedings – Europe

Figure 8. Assuming that the task
output is 250 units of production
(Requirements, FP, Errors
detected, etc) a linear projection
would forecast its completion by
week 7.5 while the “S” curve will
put it at week 9. Assuming the
task duration was originally
estimated to be 7 weeks,
according to the linear projection
it will be completed almost on
time, but according to the “S”
curve it will be 2 weeks late.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9
week

pr
od

uc
tio

n
un

its

"S" curve Linear
Forecasting error

Combining Critical Chain and Incremental Development

Figure 9 illustrates the proposed project model. The Increment Planning task uses statistical techniques to
break down the project scope into a series of Development Increments in such a way that it is almost certain
that all requirements allocated to the first increment will be implemented on time; that there is a fair chance
to implement those allocated to the second increment and so on. System Engineering encompasses
requirements, value and trade-off analysis from a user perspective; this is the activity where the
prioritization takes place. System Architecting is responsible for the general form of the solution, interface
definitions and the analysis of dependencies between requirements. The system architecting activity shall
take and all encompassing view in order to prevent the surfacing of inconsistencies later in the development
process. All three activities take place concurrently as there is a need to balance what needs to be done
from the user perspective with what could be done from a technical perspective. Each Increment
Development is a self-contained mini-project. We do not assume or impose any particular approach beneath
this level, so development could be organized according to a waterfall or an iterative life cycle as deemed
appropriate. All increments, but the last, are isolated from the project delivery date by a buffer whose
purpose is to absorb any overrun in their execution.

During execution, work progress is forecasted using models that more closely resemble the way people
work than a simple extrapolation of last week’s results. As shown by Figure 10, the output from the models
is used to forecast the activities’ completion dates and to take corrective actions. Work in one increment
does not start until the previous one is completed. This prevents people from wasting time developing

things that might never be finished anyway.

Hard
deadline

Increment Planning

System Engineering

System Architecting

Increment Development 2

Increment Development 3

Buffer 2

Buffer Increment Development 1

Figure 9. Combining CC and ID in a single project Model
© 2004, Eduardo Miranda - 7 -

 Originally published as a part of 2004 PMI Global Congress Proceedings – Europe

Work Processes
(Syst. Engineering,

Development,
Integration)

Forecast
Completion

Date

Underlying
Process Model
for the activity

Adjust Plan

Figure 10. Project tracking
Project Planning

Once the feasibility of the project has been established, the next step is to define the duration of the
development tasks in terms of its Best, Most Likely and Worst case scenarios as functions of the
increment’s scope. Second, the content of the increment is adjusted so it will have a high probability, i.e.
95%, of being completed in the allotted time. Third, the tasks are re-scheduled using the duration that
corresponds to a 50% on-time probability, allocating the difference between the high and the lower
confidence dates to a buffer. The next increment is then planned using the length of the buffer as the time
allotted.

Two aspects that need to be considered in the selection of the requirements to be developed in each
increment are: the technical dependencies that might exist between them and the need to provide
functionally complete subsets to the user.

Figure 11 illustrates the overall process and the boxed note at the end of the paper, the probability
calculations.

Table 1 shows the approximate probabilities of delivering the content of each increment when planned
according to the proposed approach. Compare this to a conventional plan, in which every requirement has
the same probability, let’s say 50% irrespective of its importance to the user.

Table 1 - Success Probabilities

Increment Calculation On-time probability

1 As planned 95%

1 + 2 0.50 * 0.95 ≈ 47.5%

1 + 2 + 3 0.50 * 0.50 * 0.50 ≈ 12.5%

© 2004, Eduardo Miranda - 8 -

 Originally published as a part of 2004 PMI Global Congress Proceedings – Europe

a) Total project duration. b) First priority requirements planned at 95% certainty. c) First priority requirements scheduled at
50% probability of being on time. d) Requirements that did not fit into Increment 1 are moved into increment 2. e, f, g & h)
The process is repeated.

Allotted Time

a)

b)

c)

d)

e)

f)

g)

h)

Requirements

Plan increment n
at 95%

confidence

Reduce scope of
increment n

Calculate buffer
size

Buffer n = Project Target
Date – Increment Completion

Date at 50%

Select priority n
requirements

No

Yes

Plan next increment
Schedule increment
n with a 50% chance
of being completed

on time

Plan fits time
allotted?

Allotted Time

© 2004, Eduardo Miranda - 9 -

 Originally published as a part of 2004 PMI Global Congress Proceedings – Europe

Figure 11. Increments are planned to fit within the allotted time

 Estimating the Minimum, Most Likely and Maximum durations

Although the specific techniques for estimating the minimum, most likely and maximum duration of the
tasks will depend on whether the estimation is done using a cost model, an expert approach or a Delphi
process, it is crucial to the success of the method, that all completion dates that could reasonably be
expected, be included between the minimum and the maximum duration.

In the case of a parametric cost model like CoCoMo, this could be done for example, by changing the value
of key cost drivers such as SLOC, PCAP or CPLX and in the case of the Delphi process by recording, not
only the converging value, but the optimistic and pessimistic estimates as well. Figure 12 shows a
calculator implemented at Ericsson Canada to help with the required calculations.

Figure 12. Buffer calculator
Project Control

In a time-bound project there is very little room for recovery, so once a problem manifests itself, it is
almost too late. Controlling a project under these circumstances requires a mechanism that:

1. Identifies the early the signs of a delay;

2. Minimizes false alarms;

3. Minimizes disturbances to ongoing work;

4. Provides a clear definition of what will be delivered and by when.

While the first three properties are important to the people working and managing the project, the fourth is
of utmost importance to the customer who depends on the project’s deliverables to execute his own
business plan.

© 2004, Eduardo Miranda - 10 -

 Originally published as a part of 2004 PMI Global Congress Proceedings – Europe

The early identification of a delay is achieved by updating the buffers, not with the actuals but with the
estimates at completion (EAC) of the individual tasks. The estimates are computed by fitting a Rayleigh
curve to the progress reported, and then projecting it into the future.

False alarms and disturbances to on-going work are prevented by the use of buffers, which isolate workers
from overreactions to small variations, by absorbing up to a 25% variance before sending a signal.

Figure 13 describes the control approach. Depending on the specific task being monitored, the units in
which the work performed is measured will be Requirements Defined, LOC produced per week, number of
errors detected, etc.

The re-planning of the next increment, if necessary, should take into consideration whether the factors that
affected the development of the current increment will also have an effect on it, and the duration an effort
adjusted accordingly.

Work
performed

Forecast Task
Completion

Date

Performance
Baseline

Buffer
n

overun
+ 25%

Replan
next

increment

Replan
current

increment

overun
+ 50%

Units depend on
task being
monitored

Adjust Buffer
Size

H
re
w

W
c
re
re
c
v
e

A
a
th

Figure 13. Monitoring progress and triggering of re-planning
Rewards, recognition and price incentives

ow can all project stakeholders be sure that the best effort will be applied towards implementing all
quirements and that people will not just get by implementing those in the first increment? The answer lies
ith the reward and recognition system.

hether employee’s rewards or price incentives in contracts, the incremental model provides a clear
riterion by which performance can be evaluated and rewarded. The delivery of the first increment has no
ward associated with it: everybody is just doing their job; subsequent increments result in increased
cognition of the extra effort put into the task.The On-time probabilities shown in Table 1 can be used to

alculate the expected value of the reward. This calculation is important because a large amount, with a
ery small probability will result in a low expected value and could be perceived as a lottery by the
mployees, thus failing to act as motivator.

s an example, a $5,000 reward for “Increment 2” has an expected value of $2,375. The same amount
pplied to “Increment 3” has an expected value of $625. Clearly, the motivational value of the reward is not
e same in both cases.

© 2004, Eduardo Miranda - 11 -

Originally published as a part of 2004 PMI Global Congress Proceedings – Europe

© 2004, Eduardo Miranda - 12 -

 Originally published as a part of 2004 PMI Global Congress Proceedings – Europe

Summary

As mentioned at the beginning of the paper, the proposed approach brings together several existing
techniques. Its value resides precisely in this. Specifically we combine a general project management
approach like Critical Chain with a well-known software development method, the incremental model, to
realize a new approach specially conceived to deal with time-bounded projects. We also provide a decision
rule to calculate the size of the increments to be developed, a reward model based on the expected value of
the increments and a recommendation to track the project based on forecasts rather than in actual progress.
Furthermore, we do not presume independent tasks' duration, which leads to significant differences in the
size of the buffers and addresses one of the main issues raised by the critics of the Critical Chain approach.

The premise in which the method is based, is that businesses are better off when they know what could,
realistically, be expected than when they are promised the moon, but no assurances are given with respect
as to when they could get it.

By taking a probabilistic, rather than a deterministic approach, the method recognizes that in any
development project there are hundreds of things that can go right and thousands that can go wrong and
makes them an intrinsic part of the planning and control processes.

Although still in an experimental stage, the method proposed in this paper has received a warm welcome
when presented both, within and outside Ericsson.

Up to today, the main obstacles found to the wider acceptance of the techniques proposed, has nothing to
do with the validity of the arguments cited or the rationale behind the method, but rather with a “can do
attitude” that rejects the existence of things over which we have limited control and the prevalence of a
business culture which seems to reward wild promises over a bounded rationality.

References

1. Miranda E., Planning Time Bounded Projects, IEEE Computer, March 2002,Volume 35, Number 3

2. Goldratt E., Critical Chain, The North River Press, 1997

3. Newbold R., Project Management in the Fast Lane, St. Lucie Press, 1998

4. McConnelS. l, Rapid Development, Taming Wild Software Schedules, Microsoft Press, 1996

5. Pisano N., Technical Performance Measurement, Earned Value and Risk Management: An Integrated
Diagnostic Tool for Program Management, http://www.acq.osd.mil/pm/paperpres/nickp/nickpaso.htm

6. Grey S., Practical Risk Assessment for Project Management, John Wiley & Sons, 1995

7. Pillai K. and Nair S., A Model for Software Development Effort and Cost Estimation, IEEE
Transactions on Software Engineering, Vol. 23, No.8, 1997

8. Putnam G., Measures for Excellence – Reliable Software On Time, Within Budget, Prentice-Hall,
1992

9. Martino J., Technological Forecasting for Decision Making, McGraw-Hill, 1993

10. Miranda E., The Use of Reliability Growth Models in Project Management, 9th International
Symposium in Software Reliability, IEEE, 1998

11. Gaffney J., On Predicting Software Related Performance of Large-Scale Systems, CMG XV, San
Francisco 1984

12. Miranda E., Running the Successful Hi-Tech Project Office, Artech House, 2003

http://www.acq.osd.mil/pm/paperpres/nickp/nickpaso.htm

Content

Hard deadlines

Critical issues
Scope

Allowances

Assessing remaining
work

Incremental approach
Fundamentals

Probabilities

Problems with traditional
planning

Critical Chain

Combining CC &
Inc. Dev.

Summary

Increment characteristics

Planning

Dependencies

Buffer Management

Rewards & Incentives

Behind the scenes

2

i i
i included

i i j ij
i included i included j included

ProjectDuration TaskDuration Lag

ProjectVariance TaskVariance TaskVariance TaskVariance

ProjectContingency k ProjectVariance
SafeProjectDuration Proj

ρ
∈

∈ ∈ ∈

= −

= + × ×

= ×

=

∑

∑ ∑ ∑

()

1 1
1

1

(Single tail Chebyshev inequality)

 (Camp and Meidell ine quality)
2.25 1

i i included

ectDuration ProjectContingency

k
SafetyLevel

or

k
SafetyLevel

Buffer SafeProjectDuration TaskDur∀ ∈

+

= −
−

=
× −

= − ()

()Max ,

i i
i included

i included i i i
i

ation Lag

Buffer SafeProjectDuration TaskDuration Lag k TaskVariance

∈

∀∉

−

⎛ ⎞
= − − ×⎜ ⎟

⎝ ⎠

∑

∑

Content

Hard deadlines

Critical issues
Scope

Allowances

Assessing remaining
work

Incremental approach
Fundamentals

Probabilities

Problems with traditional
planning

Critical Chain

Combining CC &
Inc. Dev.

Summary

Increment characteristics

Planning

Dependencies

Buffer Management

Rewards & Incentives

Calculating contingency

3.163.02.101.2890%

2.582.381.721.0385%

2.0

1.73

Single tail
Chebyshev
Inequality3

2.231.490.8480%

2.01.330.6875%

Chebyshev
Inequality4

Camp & Meidell
Inequality2

Unimodal,
symmetric
distribution

Normal
Distribution1

K

Desired safety
level

1. Common assumption in the PM literature
2. Practical Software Measurement: Measuring for Process Management and Improvement W. Florac R. Park & A. Carleton, SEI, 1997
3. The Economic Analysis of Industrial Projects, L. Bussey, Prentice-Hall series in Industrial and System Engineering, 1978
4. Probability and Statistics in Aerospace Engineering M.Rheinfurth and L. Howell, NASA, 1998

ProjectContingency k ProjectVariance= ×

	PmiCriticalIncremental.pdf
	Combining Critical Chain Planning and Incremental Developmen
	Eduardo Miranda, Program Director, Ericsson Research Canada
	Abstract
	Introduction
	Uncertainty in the planning and execution of projects
	Probabilities in Project Management
	Task probabilities
	From tasks to projects

	Measuring Progress Using Rate of Changes
	Combining Critical Chain and Incremental Development
	Project Planning
	Estimating the Minimum, Most Likely and Maximum durations
	Project Control

	Rewards, recognition and price incentives
	Summary
	References

