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Abstract 

Cutting content seems to be the prevalent way of meeting deadlines in projects that are running late. But 
why waste effort and time working on things that most likely, are going to go at the first sign of trouble?  
Why don’t make the decisions about what is important and what is not up-front, and only start work on the 
latter if we have the necessary time to do it? 

By combining critical chain (CC) and Incremental Development (ID), two well-known techniques, we can 
create a new approach to plan and execute projects, which guaranties, with a set probability, the delivery of 
an agreed subset of the total functionality by a stipulated date. 

Introduction 

A time-bound project is a project that is constrained by hard deadlines. Hard deadlines are those in which 
the date of delivery is as important as the delivery itself. If the project delivers after the deadline, the 
delivery loses much of its value. Examples of hard deadlines are exhibition dates, government regulations, 
a competitor’s announcement and the customer’s own business plans.  

Most of these projects, start with more requirements that can realistically be handled within the imposed 
time constraints and consequently, midway through the development, they find necessary to start slashing 
some of them. These un-planned cuts result in customer frustration and wasted effort. A much better 
approach would be to define the requirements’ priority up-front, allocating their development to successive 
releases of the project in such way, that we could be almost sure that the project will deliver all the 
important requirements, that the second less important will still have a fair chance of being delivered, with 
the gold plated ones only to be done if there is any time left. 

While the lack of requirements prioritization, is one of the reasons why most of these projects are late, it is 
certainly not the only one. The inability of traditional planning methods to deal with the uncertainty present 
on the estimates on which the plans are based, and the failure to recognize that development work do not 
progress in linear fashion, the infamous 90% complete syndrome, are also to blame. 

As will be explained later, traditional critical path calculations involving uncertainty produce considerably 
shorter schedules than those that should be realistically expected. With a shorter schedule as starting point, 
being late is a tautology. 

The second problem, assuming that a task progresses at a constant rate, prevents project managers from 
seeing the early signs of delay in tasks until it is too late to take any other action than trim down features, 
compromise on quality or re-schedule the project. 

The method [1] presented here addresses these problems by combining ideas from critical chain planning 
[2,3], incremental development [4] and rate monitoring [5] into a practical approach for planning and 
executing time-bounded projects.  

This method is not a one-stop solution for all software development problems. It just focuses on how to 
best schedule work to guarantee that a working product with an agreed subset of the total functionality 
could be delivered by a required date. 

The sections that follow explain the fundamentals of planning under uncertainty, the use of rate monitoring 
to track progress and finally the application of these concepts in planning and executing projects. 



Uncertainty in the planning and execution of projects 

Probabilities in Project Management 

Uncertainty is the reason project management is needed. Things are neither black nor white; things always 
depend on other things. In this context, we shall think of a probability as a numerical measure of the 
strength of a belief in a certain proposition. By convention, probability ranges from 0 to 1, where 0 means 
that the belief in question is certainly false and 1 means that is certainly true. A probability of .5 means that 
there is no reason to favor a belief over another. For example, if a project manager assigns to a task a 
probability of .7 of finishing in 30 days, he is saying that his belief to finish the task on time is stronger 
than if he had assigned a .5 probability, but that he is not completely certain to be able to, which would 
imply a probability of 1. 

The mathematical theory of probability specifies how the probability on one belief should be constructed 
from the probabilities of other beliefs in order for them to be consistent with one another. For example if 
the project manager says that the probability of finishing a task in 30 days is .7, the probability of not 
finishing on time would be .3 (1 - .7) and not some other arbitrary value like .4 or .5. 

Task probabilities 

The estimates on which project schedules and resource allocations are based are never single numbers; 
whether spoken or not, there are many assumptions behind each of them. Some of these assumptions 
concern the complexity of the tasks, others our ability to carry them out. Some of them, if true, will 
contribute to an early completion of a task, others will add to the execution time. Intuitively we could see, 
that for a task to finish at the earliest possible time, all the “favorable” assumptions must be true and all the 
“inauspicious” ones false. The probability of this happening is very low. The same could be said for the 
latest possible date. The most likely date corresponds then to a situation in which the most probable “good” 
assumptions are true and the most probable “bad” ones are false. Numerically, the situation can be 
expressed by a triangular probability distribution such as the one shown by Figure 1 (Strictly speaking, the 
caption for the “y” axis should read f(x) since this is a continuous distribution. The term probability is used 
instead for its intuitive appeal). 

Since the actual probability distribution function for the duration of the task is unknown, the choice of a 
simple triangular distribution is a sensible one [5]. Its right skewedness captures the fact that while there is 
a limited number of things that will shorten the duration of a task, the number of things that can go wrong 
is virtually unlimited.  

From the project manager’s point of view, more important than the probability of finishing on a specific 
date, is the probability of completing the task on or before a certain date. This probability, called the on-
time probability of the task, can be derived from the cumulative distribution shown in Figure 2. 

 

Figure 1. If all the favorable 
assumptions are true and all the 
gloomy are false, the task will be 
completed in 10 days, this is the 
Earliest Completion Date.  The 
Most Likely duration is 20 days. 
If everything that can go wrong, 
short of abandoning the task, 
goes wrong the task could be 
completed in 40 days. This is the 
Latest Completion Date. 
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Figure 2. Cumulative 
probabilities. The Most Likely 
completion date has an on-time 
probability of less than 40%.  
The Expected completion date 
is of around 23 days. If we 
want to be 75% sure of 
completing the task on time we 
would have to schedule 27 
days. 
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In general, the larger the number of assumptions behind the estimated task duration, the larger the spread 
between the earliest and the latest completion dates. The effect of such an uncertainty results in very 
different on-time probabilities, as shown by Figure 3.  

From tasks to projects 

A common approach used to assess uncertainty in projects, is to calculate the expected duration of the 

project as the sum of the expected duration of the tasks along the critical path, with an standard deviation 
equal to the square root of the sum of the squares of the standard deviation of the same tasks, and then to 
use a normal distribution to calculate the on-time probability for the project. This approach is based on the 
central limit theorem, which states that the distribution of the sum of a number of independent random 
variables approaches a normal distribution as the number of variables (tasks) grows larger. 

0%

20%

40%

60%

80%

100%

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
duration (days)

pr
ob

ab
ilit

y

0.00
0.02

0.04
0.06
0.08
0.10

0.12
0.14

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
duration (days)

pr
ob

ab
ilit

y

Figure 3. Two tasks with the same Earliest and Most Likely, but different Latest Completion dates have 
different levels of risk. The Expected completion dates for the less risky task is 17 days, while for the 
other is 23 days. By the same token, the on-time probability of the Most likely date is around 37% in the 
first case and under 20% in the second.  

Assuming independent tasks duration as required by the central limit theorem, although a very common 
assumption, is perhaps one of the most dangerous a project manager can make. In practical terms, this 
assumption expresses the belief that the lateness of some tasks is compensated by the early completion of 
others and that in the end everything balances out. This might be a valid assumption when dealing with 
events such as rain in a construction project or a late delivery from a supplier, but not in situations such as 
the underestimation of the system’s complexity or the overestimation of the team capabilities, which will 
affect the duration of most tasks and in the same direction. If there is an underlying cause that could shift 
the duration of several tasks in the same direction, the tasks are not independent but correlated. The 
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practical consequence of dealing with correlated tasks duration is an increase in the project’s standard 
deviation, which translates into higher risks. See figures 4-a and 4-b. 
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between the number of 
tasks summed, the 
coefficient of correlation 
(ρ) and the standard 
deviation of the sum. 

Figure 4-b. Simulation of a simple 
project showing the difference 
between the assumptions of 
independent and correlated task 
durations. See the difference on the 
shape of the distribution. 

Other problem not addressed by traditional critical path calculations, is the problem of merging paths, see 
Figure 5, where the earliest start of the integration task always corresponds to end the latest development 
path. This results in a mechanism that passes delays, but seldom passes savings!
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Figure 5 – In the presence of 
uncertainty, the expected project 
duration is not equal to the sum of the 
expected duration of the tasks in the 
critical path. The integration task 
cannot begin until both development 
tasks have been completed. 

 

Measuring Progress Using Rate of Changes 
When measuring the progress of a task in terms of its main output, i.e. requirements defined, LOC, errors 
found, pages of documentation written, etc, it is possible to observe that the rate of growth of the output is 
not constant throughout the duration of the task and that it more closely resembles the shape of Figure 6. 
This “S” pattern [7,8,9,10,11, 12], typical of many intellectual activities could be explained by the 
existence of a number of actions and thought processes at the beginning and end of the task which, 
although value adding, do not contribute directly to the quantity being measured. Examples of such actions 
and thought processes are: learning, team formation and work reviews. Whatever the true reasons for this 
effect, it is so common and noticeable that has a name of its own: “the 90% complete syndrome”.   
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Figure 6. The “S” curve. Production 
does not grow at a constant rate. At 
the peak of productivity, between 
weeks 3 and 5, the percentage 
complete soars 20% in just one 
week. Towards the end of the task it 
takes three more times to go from 80 
to 100% complete.  

The result of extrapolating completion dates from the rates of progress observed through the half-life of the 
task using a straight line is the announcement of optimistic completion dates that are never met. Figure 7 
shows some examples of work progress from real projects, and Figure 8 the error incurred in forecasting 
the task completion by using a linear model instead of the “S” curve paradigm.  
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Progress rates are not constant 
 
a) AXE Sw itch, error discovery pattern. Ericsson 
1997. 
 
b) Phyton Project. Semiconductor development 
project. Reported by Ford and Sterman in 
Overcoming the 90% Syndrome: Iteration 
Management in Concurrent Development Projects. 
 
c) 5ESS-2000 Sw itch, code production pattern. 
Lucent 1997. 

a 

c 

b 

Figure 7. Progress, measured in terms of its visible output is not constant thru the duration of a task or 
project. 
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Figure 8. Assuming that the task 
output is 250 units of production 
(Requirements, FP, Errors 
detected, etc) a linear projection 
would forecast its completion by 
week 7.5 while the “S” curve will 
put it at week 9. Assuming the 
task duration was originally 
estimated to be 7 weeks, 
according to the linear projection 
it will be completed almost on 
time, but according to the “S” 
curve it will be 2 weeks late. 
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Combining Critical Chain and Incremental Development 

Figure 9 illustrates the proposed project model. The Increment Planning task uses statistical techniques to 
break down the project scope into a series of Development Increments in such a way that it is almost certain 
that all requirements allocated to the first increment will be implemented on time; that there is a fair chance 
to implement those allocated to the second increment and so on. System Engineering encompasses 
requirements, value and trade-off analysis from a user perspective; this is the activity where the 
prioritization takes place. System Architecting is responsible for the general form of the solution, interface 
definitions and the analysis of dependencies between requirements. The system architecting activity shall 
take and all encompassing view in order to prevent the surfacing of inconsistencies later in the development 
process. All three activities take place concurrently as there is a need to balance what needs to be done 
from the user perspective with what could be done from a technical perspective. Each Increment 
Development is a self-contained mini-project. We do not assume or impose any particular approach beneath 
this level, so development could be organized according to a waterfall or an iterative life cycle as deemed 
appropriate. All increments, but the last, are isolated from the project delivery date by a buffer whose 
purpose is to absorb any overrun in their execution.  

During execution, work progress is forecasted using models that more closely resemble the way people 
work than a simple extrapolation of last week’s results. As shown by Figure 10, the output from the models 
is used to forecast the activities’ completion dates and to take corrective actions. Work in one increment 
does not start until the previous one is completed. This prevents people from wasting time developing 

things that might never be finished anyway.

Hard 
deadline

Increment Planning 

System Engineering 

System Architecting 

Increment Development 2 

Increment Development 3 

Buffer 2 

Buffer Increment Development 1 

 
Figure 9. Combining CC and ID in a single project Model
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Figure 10. Project tracking
Project Planning 

Once the feasibility of the project has been established, the next step is to define the duration of the 
development tasks in terms of its Best, Most Likely and Worst case scenarios as functions of the 
increment’s scope. Second, the content of the increment is adjusted so it will have a high probability, i.e. 
95%, of being completed in the allotted time. Third, the tasks are re-scheduled using the duration that 
corresponds to a 50% on-time probability, allocating the difference between the high and the lower 
confidence dates to a buffer. The next increment is then planned using the length of the buffer as the time 
allotted.  

Two aspects that need to be considered in the selection of the requirements to be developed in each 
increment are: the technical dependencies that might exist between them and the need to provide 
functionally complete subsets to the user. 

Figure 11 illustrates the overall process and the boxed note at the end of the paper, the probability 
calculations.  

Table 1 shows the approximate probabilities of delivering the content of each increment when planned 
according to the proposed approach. Compare this to a conventional plan, in which every requirement has 
the same probability, let’s say 50% irrespective of its importance to the user. 

Table 1 - Success Probabilities 

Increment Calculation On-time probability 

1 As planned 95% 

1 + 2 0.50 * 0.95 ≈ 47.5% 

1 + 2 + 3 0.50 * 0.50 * 0.50 ≈ 12.5% 
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a) Total project duration. b) First priority requirements planned at 95% certainty. c) First priority requirements scheduled at 
50% probability of being on time. d) Requirements that did not fit into Increment 1 are moved into increment 2. e, f, g & h) 
The process is repeated. 

Allotted Time

a) 

b) 

c) 

d) 

e) 

f) 

g) 

h) 

Requirements 

Plan increment n 
at 95% 

confidence 

Reduce scope of 
increment n  

Calculate buffer 
size 

Buffer n = Project Target 
Date – Increment Completion 

Date at 50% 

Select priority   n 
requirements 

No 

Yes 

Plan next increment 
Schedule increment 
n with a 50% chance 
of being completed 

on time  

Plan fits time 
allotted? 

Allotted Time 
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Figure 11. Increments are planned to fit within the allotted time 



 Estimating the Minimum, Most Likely and Maximum durations 

Although the specific techniques for estimating the minimum, most likely and maximum duration of the 
tasks will depend on whether the estimation is done using a cost model, an expert approach or a Delphi 
process, it is crucial to the success of the method, that all completion dates that could reasonably be 
expected, be included between the minimum and the maximum duration.  

In the case of a parametric cost model like CoCoMo, this could be done for example, by changing the value 
of key cost drivers such as SLOC, PCAP or CPLX and in the case of the Delphi process by recording, not 
only the converging value, but the optimistic and pessimistic estimates as well. Figure 12 shows a 
calculator implemented at Ericsson Canada to help with the required calculations. 

 
Figure 12. Buffer calculator
Project Control 

In a time-bound project there is very little room for recovery, so once a problem manifests itself, it is 
almost too late. Controlling a project under these circumstances requires a mechanism that: 

1. Identifies the early the signs of a delay; 

2. Minimizes false alarms; 

3. Minimizes disturbances to ongoing work; 

4. Provides a clear definition of what will be delivered and by when. 

While the first three properties are important to the people working and managing the project, the fourth is 
of utmost importance to the customer who depends on the project’s deliverables to execute his own 
business plan. 
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The early identification of a delay is achieved by updating the buffers, not with the actuals but with the 
estimates at completion (EAC) of the individual tasks. The estimates are computed by fitting a Rayleigh 
curve to the progress reported, and then projecting it into the future. 

False alarms and disturbances to on-going work are prevented by the use of buffers, which isolate workers 
from overreactions to small variations, by absorbing up to a 25% variance before sending a signal. 

Figure 13 describes the control approach. Depending on the specific task being monitored, the units in 
which the work performed is measured will be Requirements Defined, LOC produced per week, number of 
errors detected, etc. 

The re-planning of the next increment, if necessary, should take into consideration whether the factors that 
affected the development of the current increment will also have an effect on it, and the duration an effort 
adjusted accordingly. 
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Figure 13. Monitoring progress and triggering of re-planning
Rewards, recognition and price incentives 

ow can all project stakeholders be sure that the best effort will be applied towards implementing all 
quirements and that people will not just get by implementing those in the first increment? The answer lies 
ith the reward and recognition system. 

hether employee’s rewards or price incentives in contracts, the incremental model provides a clear 
riterion by which performance can be evaluated and rewarded. The delivery of the first increment has no 
ward associated with it: everybody is just doing their job; subsequent increments result in increased 
cognition of the extra effort put into the task.The On-time probabilities shown in Table 1 can be used to 

alculate the expected value of the reward. This calculation is important because a large amount, with a 
ery small probability will result in a low expected value and could be perceived as a lottery by the 
mployees, thus failing to act as motivator. 

s an example, a $5,000 reward for “Increment 2” has an expected value of $2,375. The same amount 
pplied to “Increment 3” has an expected value of $625. Clearly, the motivational value of the reward is not 
e same in both cases. 
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Summary 

As mentioned at the beginning of the paper, the proposed approach brings together several existing 
techniques. Its value resides precisely in this. Specifically we combine a general project management 
approach like Critical Chain with a well-known software development method, the incremental model, to 
realize a new approach specially conceived to deal with time-bounded projects. We also provide a decision 
rule to calculate the size of the increments to be developed, a reward model based on the expected value of 
the increments and a recommendation to track the project based on forecasts rather than in actual progress. 
Furthermore, we do not presume independent tasks' duration, which leads to significant differences in the 
size of the buffers and addresses one of the main issues raised by the critics of the Critical Chain approach.  

The premise in which the method is based, is that businesses are better off when they know what could, 
realistically, be expected than when they are promised the moon, but no assurances are given with respect 
as to when they could get it.  

By taking a probabilistic, rather than a deterministic approach, the method recognizes that in any 
development project there are hundreds of things that can go right and thousands that can go wrong and 
makes them an intrinsic part of the planning and control processes. 

Although still in an experimental stage, the method proposed in this paper has received a warm welcome 
when presented both, within and outside Ericsson.  

Up to today, the main obstacles found to the wider acceptance of the techniques proposed, has nothing to 
do with the validity of the arguments cited or the rationale behind the method, but rather with a “can do 
attitude” that rejects the existence of things over which we have limited control and the prevalence of a 
business culture which seems to reward wild promises over a bounded rationality. 
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