
Agile Israel

Feature Driven Development
For the agile agent of change

Justin-Josef Angel

www.JustinAngel.Net
blogs.Microsoft.co.il/blogs/JustinAngel

Your
Comfort
Zone

Stress

Stress

Change Change

Justin-Josef Angel

www.JustinAngel.Net
blogs.Microsoft.co.il/blogs/JustinAngel

For the agile agent of change

Agile Israel

Feature Driven Development

Who here has caused change?

• Deployed an application?

• Upgraded technology?

• Switched IDEs?

• Told someone you loved them?

• People resist to change.

• People don’t want change.

• Change = Bad.

Agile = Change = Bad

• Agile methodologies require us to
work differently.

• What about other people?

• PROBLEM

• But first, What are you going to get
from this presentation?

• and what is “Agile”?

What Is Agile?

• Agile is the solution to a problem.

• The traditional Waterfall model:
Analysis -

Requirements

Design

Implement -
Code

Test

Deploy

Waterfall has a problem
• “building model”

• jumping from the
side of a building.

• If you fall from
the top – it’s
really going to
hart when you
reach the bottom.

• Projects FAIL!

Analysis

Design

Implement

Test

Deploy

Example of the problem

• “Transfer X amount of money from
one account to the other and take
10% commission”.

• Who are we taking the commission
from?

• Israeli Banks – From the sender.

• Paypal – from the receiver.

Simplest Solution – Short Iterations

• Take the waterfall model – and add
one arrow.

Analysis -
Requirements

Design

Implement -
Code

Test

Deploy

What is Agile and is it the solution?

• Agile is adding that arrow.

• Short Iterations – Process

• (Contentious integration – Practice)

• Agile is a family of Software
development process
methodologies. Big words ☺☺☺☺

• Agile Manifesto.

So, Who’s in the family?

• Feature Driven development

• eXtreme Programming (XP)

(which is the most common)

• Scrum

• DSDM

• Crystal Clear

• Agile RUP – AUP

• ASD

• …

When do we use XP?
Critical

Quality
Of people

Amount of
people

Requirements
Change

Senior

Novice

Very

Low

500+10

100

Often

Rarely

When do we use XP?

• Senior & experienced developers

• Small number of developers

• Low critically

• High Requirements change

XP Critics say…

• requires too much cultural change
to adopt

• insufficient structure and necessary
documentation

• only works with senior-level
developers

• can lead to more difficult
contractual negotiations

- wikipedia, “Agile software development”

XP Is not enough for some

• Team size < 10

• Very experienced developers

• Low critically

• Very big changes

• Process Buy-in is a must

• There is no golden hammer

Common Agile problems & Solutions

• Non-experienced developers

���� More process

• High critically

���� More upfront design

• Big teams

���� More role definitions

• Change is not an option
���� Less Change, More adapting

• MORE

Feature Driven Development

• Feature Driven Development (FDD)
can be implemented with:
– up to 500 developers

– More critical projects

– Bigger projects

– More novice developers

– Environments that demand Waterfall

• Every methodology has:
– Process

– Best Practices

The Three Faces of FDD

• Waterfall

• Extremely Agile

• myFDD

• The boss doesn’t have to know
we’re Agile.

• The developers don’t need to know
they’re Agile.

• No change = Good.

The FDD Process

Analysis

Design

Implement

Deploy

Develop
Model
Develop
Model

Build
Feature
List

Build
Feature
List

Plan By
Feature
Plan By
Feature

Design by
Feature
Design by
Feature

Build By
Feature
Build By
Feature

Design

Develop Model

• Roles we need to assign:

– Chief Architect

– Chief Developers

– Domain Experts (Billy-bob-joe)

1. Create Modeling Team: Roles
mentioned above & rotating
developers.

2. Domain Walkthrough: Domain Experts
tell us everything they know.

3. Study Documents

COWS!!!

• Billy-bob-joe is a southern
cattle-rancher and he needs
a system to manage his
farm.

• The system should manage:
– Existing cattle

– Breeding

– Slaughtering & selling meat

– Selling cattle

• This is our problem domain.

Develop Model - example

4. Create Model in groups of three
people. How about this one?

Develop Model – Straw man

• What did you think of that Model?

• This was intentionally a “weak”

Model the chief architect created.

• “Straw-man” Model

• The groups of three people
“captured” my Model and while
doing so improved it and exposed
it’s weak points.

Develop Model – Three Faces

• Alternative Models as notes.

• Model Driven Architecture.

• Develop Model as Waterfall –
98%-100% complete Model.

• Develop Model as extremely
Agile – 60%.

• myFDD should be about
70%-80%.

The FDD Process

Analysis

Design

Implement

Deploy

Develop
Model
Develop
Model

Build
Feature
List

Build
Feature
List

Plan By
Feature
Plan By
Feature

Design by
Feature
Design by
Feature

Build By
Feature
Build By
Feature

Design

Build Feature List

• Do one thing – Build a Feature List.

• A FDD “Feature” is a small client valued
feature.

• Small

• Client

• Valued

• Feature

• Feature - <action> <result> <object>

• Feature Set – <action>ing <object>

• Major Feature Set – <object> Management

Build Feature List - Example
• Feature - <action> <result> <object>

• Feature Set – <action>ing <object>

• Major Feature Set – <object> Management

Herd Management
Birthing cattle

1. Add a new baby Cattle To Herd

2. Mark Mom not pregnant for Cattle

Slaughter Management
Slaughtering Cattle

3. Calculate Price For Cattle

4. Add meat to Meat Storage

5. Remove Dead cow from herd.

Build Feature List – Feature & Model

• Feature ���� Model

• Add a new baby Cattle To Herd
����

Herd.AddNewBabyCattle(Cattle)

• Mark Mom not pregnant for Cattle

���� Cattle.MarkMomAsNotPregnant

• Calculate Price For Cattle

���� Cattle.CalculatePrice

• Add meat to Meat Storage

���� MeatStorage.AddMeat(Meat)

Build Feature List - Reports

• Features are reportable!

• Client is always informed.

• Management also has access ☺☺☺☺

Birthing
Cattle

Herd Management

Adding
Cattle

Removing
Cattle

100%
(14) 33%

(3) 0%
(19)

Yaniv Roy John

Build Feature List – Summery

• Features are small & client valued.

• Feature list is very short.

• Reportable.

• Testable.

• Feature sets are Assignable.

• Feature sets ���� iterations.

• Iterations can be planned.

Build Feature List – Three faces

• Features as waterfall – write up
95%-100% of the features and
sign as contract.

• Features as Extremely agile – 70-
80%.

• myFDD – 80%-90%

The FDD Process

Analysis

Design

Implement

Deploy

Develop
Model
Develop
Model

Build
Feature
List

Build
Feature
List

Plan By
Feature
Plan By
Feature

Design by
Feature
Design by
Feature

Build By
Feature
Build By
Feature

Design

03:10:00

Feature Sets into iterations

1. Determine Development Sequence

– Check Dependencies (cow before cows)

– Consider High-risk feature

– Consider High complexity features

– Either by Date or by Sequence.

2. Assign Project Manager

3. Assign Chief developers to feature
sets

4. Assign developers as Class Owners

Plan By Feature - Example
Justin ���� “Meat Storage” Class Owner

Miki ���� “Cow” Class Owner

Oren ���� “Herd” Class Owner

Roy ���� “Slaughtering Cattle” Chief
Developer

Yaniv ���� “Birthing Cattle” Chief Developer

Feature Sets into Iterations:

1. Adding Cattle, Removing Cattle

2. Birthing Cattle, Killing Cattle

3. Storing Meat, Selling Cattle

4. Slaughtering Cattle, Selling Meat

Plan by feature
• Planning like waterfall – Set dates
for the completion & start date,
hours to work and for each feature
set.

• Planning extremely Agile –
determine the order of Feature sets.

• Planning myFDD – determine
completion months for feature sets.

• Anyway – group Feature Sets into
Iterations.

The FDD Process

Analysis

Design

Implement

Deploy

Develop
Model
Develop
Model

Build
Feature
List

Build
Feature
List

Plan By
Feature
Plan By
Feature

Design by
Feature
Design by
Feature

Build By
Feature
Build By
Feature

Design

Design By Feature

• This is the first part of short
iteration.

• We know which feature sets we
need to build.

• Now it’s time to design the
software we will build.

